

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

May 2017

Physics

Higher level

Paper 3

22 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

-2-

Section A

Question		on	Answers	Notes	Total
1	а		in order to keep the temperature constant \checkmark in order to allow the system to reach thermal equilibrium with the surroundings/OWTTE \checkmark	Accept answers in terms of pressure or volume changes only if clearly related to reaching thermal equilibrium with the surroundings.	1 max
	b		recognizes <i>b</i> as gradient \checkmark calculates <i>b</i> in range 4.7×10^4 to 5.3×10^4 \checkmark Pam \checkmark	Award [2 max] if POT error in b. Allow any correct SI unit, eg kg s ⁻² .	3
	C		$V \propto H$ thus ideal gas law gives $p \propto \frac{1}{H} \checkmark$ so graph should be «a straight line through origin,» as observed \checkmark		2
	d		$n = \frac{bA}{RT} OR \text{ correct substitution of one point from the graph } \checkmark$ $n = \frac{5 \times 10^4 \times 1.3 \times 10^{-3}}{8.31 \times 300} = 0.026 \approx 0.03 \checkmark$	Answer must be to 1 or 2 SF. Award [2] for a bald correct answer. Allow ECF from (b).	2

Question		on	Answers	Notes	Total
1	е		very large $\frac{1}{H}$ means very small volumes / very high pressures \checkmark		
			at very small volumes the ideal gas does not apply		
			OR		2
			at very small volumes some of the assumptions of the kinetic theory of gases do not hold \checkmark		

Question		on	Answers	Notes	Total
2	а		$g = \frac{4\pi^2 \times 1.60}{2.540^2} = 9.7907 \checkmark$ $\Delta g = g(\frac{\Delta L}{L} + 2 \times \frac{\Delta T}{T}) = \ll 9.7907 \times \left(\frac{0.01}{1.60} + 2 \times \frac{0.005}{2.540}\right) = \gg 0.0997$ OR $1.0 \% \checkmark$	For the first marking point answer must be given to at least 2 dp. Accept calculations based on $g_{max} = 9.8908$ $g_{min} = 9.6913$. $\frac{g_{max} - g_{min}}{2} = 0.099 \approx 0.1$	3
			hence $g = (9.8 \pm 0.1) \text{ wm s}^{-2} \text{ ~~} \mathcal{OR} \Delta g = 0.1 \text{ wm s}^{-2} \text{ ~~} \mathcal{I}$		
	b		$\frac{T}{T_0} = 1.01 \checkmark$ $\theta_{\text{max}} = 22 \ll 3 \checkmark$	Accept answer from interval 20 to 24.	2

Section B

Option A — Relativity

Question		on	Answers	Notes	Total
3	а		a set of coordinate axes and clocks used to measure the position «in space/time of an object at a particular time»		1
			a coordinate system to measure x,y,z,and t / OWTTE ✓		
	b	i	magnetic only ✓ there is a current but no «net» charge «in the wire» ✓		2
	b	ii	electric only ✓ <i>P</i> is stationary so experiences no magnetic force ✓ relativistic contraction will increase the density of protons in the wire ✓		3

Question		on	Answers	Notes	Total
4	а		$\Delta t_{\rm P}$ / observer sitting in the train \checkmark		1
	b		$\gamma = \frac{\Delta t_o}{\Delta t_p} = \ll = \frac{1}{0.30} \approx = 3.3 \checkmark$ to give $v = 0.95c \checkmark$		2
	С		$\gamma = 1.25 \checkmark$ «length of train according Q» = 125/1.25 \checkmark «giving 100 m»		2
	d	i	axes drawn with correct gradients of $\frac{5}{3}$ for <i>ct'</i> and 0.6 for <i>x'</i> \checkmark	Award [1] for one gradient correct and another approximately correct.	1

Q	Question		Answers	Notes	Total
5	а		$\gamma = 1.96 \checkmark$ $E_{k} = (\gamma - 1) \ m_{0}c^{2} = 900 \text{ (MeV)} \checkmark$ $pd \approx 900 \text{ (MV)} \checkmark$	Award [2 max] if Energy and Potential difference are not clearly distinguished, eg by the unit.	3
	b		energy of proton = $\gamma \text{ mc}^2 = 1838 \text{ «MeV» }$ total energy available = energy of proton + energy of antiproton = $1838 + 1838 = 3676$ «MeV» \checkmark momentum of a one photon = Total energy / 2c = $1838 \text{ «MeVc}^{-1} \text{»} \checkmark$		3

6	а	$f = \left(\frac{E}{h}\right) = \frac{14400 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} = \left(3.475 \times 10^{18} \text{ Hz}\right) \checkmark$ $\Delta f = \left(\frac{g \times \Delta h \times f}{c^2}\right) \approx 8550 \text{ Hz} \checkmark$	2
	b	«as the photon moves away from the Earth, » it has to spend energy to overcome the gravitational field \checkmark since $E = hf$, the detected frequency would be lower «than the emitted frequency» \checkmark	2

Option B — Engineering physics

Question		on	Answers	Notes	Total
7	а	i	$\frac{M}{3}$ vR \checkmark		1
	а	ii	evidence of use of: $L = I\omega = (MR^2 + \frac{M}{3}R^2)\omega$		1
	а	111	evidence of use of conservation of angular momentum, $\frac{MvR}{3} = \frac{4}{3}MR^2\omega$ \checkmark «rearranging to get $\omega = \frac{v}{4R}$ »		1
	a	iv	initial KE = $\frac{Mv^2}{6}$ \checkmark final KE = $\frac{Mv^2}{24}$ \checkmark energy loss = $\frac{Mv^2}{8}$ \checkmark		3

Question		on	Answers	Notes	Total
7	b	i	$\alpha \ll \frac{3}{4} \frac{\Gamma}{MR^2} \approx \frac{3}{4} \frac{0.01}{0.7 \times 0.5^2} \checkmark$ «to give $\alpha = 0.04286 \text{ rad s}^{-2} \gg$	Working OR answer to at least 3 SF must be shown.	1
	b	ii	$\theta = \frac{\omega_i^2}{2\alpha} \text{ «from } \omega_f^2 = \omega_i^2 + 2\alpha\theta \text{ ~ } \checkmark$ $\theta \ll \frac{v^2}{32R^2\alpha} = \frac{2.1^2}{32 \times 0.5^2 \times 0.043} \text{ ~ } = 12.8 \text{ OR} 12.9 \text{ ~ } \text{rad} \text{~ } \checkmark$ $\text{number of rotations } \ll \frac{12.9}{2\pi} \text{~ } = 2.0 \text{ revolutions ~ } \checkmark$		3

Question		on	Answers	Notes	Total
8	а		«a process in which there is» no thermal energy transferred between the system and the surroundings \checkmark		1
	b		A to B AND C to D ✓		1
	с	i	$T = \frac{PV}{nR} \checkmark$ $T\left(=\frac{512 \times 10^3 \times 1.20 \times 10^{-3}}{0.150 \times 8.31}\right) \approx 493 \text{ «K» } \checkmark$	The first mark is for rearranging.	2
	с	ii	$P_{B} = \frac{P_{a}V_{A}}{V_{B}} \checkmark$ $P_{B} = 267 \text{ kPa } \checkmark$	The first mark is for rearranging.	2
	d	i	«B to C adiabatic so» $P_B V_B^{\frac{5}{3}} = P_C V_C^{\frac{5}{3}}$ AND $P_C V_C = nRT_C$ «combining to get result» \checkmark	It is essential to see these 2 relations to award the mark.	1
	d	ii	$T_{c} = \left(\frac{P_{B}V_{B}^{\frac{5}{3}}}{nR}\right)V_{c}^{\frac{-2}{3}} \checkmark$ $T_{c} = \left(\frac{267 \times 10^{3} \times (2.30 \times 10^{-3})^{\frac{5}{3}}}{0.150 \times 8.31}\right) (2.90 \times 10^{-3})^{\frac{-2}{3}} \approx 422 \text{ K} \times \checkmark$		2
	е		the isothermal processes would have to be conducted very slowly / OWTTE \checkmark		1

Question		on	Answers Notes	Total
9	а		ALTERNATIVE 1 pressure in a liquid increases with depth ✓ so pressure at bottom of bubble greater than pressure at top ✓ ALTERNATIVE 2 weight of liquid displaced ✓ greater than weight of bubble ✓	2
	b		$\frac{\text{weight}}{\text{buoyancy}} \left(= \frac{V\rho_a g}{V\rho_l g} = \frac{\rho_a}{\rho_l} = \frac{1.2}{1200} \right) = 10^{-3} \checkmark$ Since the ratio is very small, the weight can be neglected \checkmark $Award [1 max] \text{ if only mass of the bubble is calculated and identified as negligible to mass of liquid displaced.}$	f 2
	с		evidence of equating the buoyancy and the viscous force $\ll \rho_l \frac{4}{3} \pi r^3 g = 6\pi \eta r v_l \gg \checkmark$ $v_l = \ll \frac{2}{9} \frac{1200 \times 9.81}{1 \times 10^{-3}} (0.25 \times 10^{-3})^2 = 0.16 \ \text{cm s}^{-1} \gg \checkmark$	2

10	а	the loss of energy in an oscillating system \checkmark		1
	b	$Q = 2\pi \frac{16^2}{16^2 - 10.3^2} \approx 11 \checkmark$	Accept calculation based on any two correct values giving answer from interval 10 to 13.	1
	С	the amplitude decreases at a slower rate \checkmark a higher Q factor would mean that less energy is lost per cycle \checkmark		2

Option C — Imaging

Question		on	Answers	Notes	Total
11	а	i	an image formed by extensions of rays, not rays themselves <i>OR</i> an image that cannot be projected on a screen ✓		1
	а	ii	$\frac{1}{v} = \frac{1}{3.0} - \frac{1}{4.0} \checkmark$ «v = 12 cm»		1
	а	iii	$u = 18 - 12 = 6.0 \text{ cm} \times \checkmark$ $v = -24 \text{ cm} \times \checkmark$ $\frac{1}{f} = \frac{1}{6.0} - \frac{1}{24} \Longrightarrow f = 8.0 \text{ cm} \times \checkmark$	Award [2 max] for answer of 4.8 cm. Minus sign required for MP2.	3
	а	iv	line parallel to principal axis from intermediate image meeting eyepiece lens at P ✓ line from arrow of final image to P intersecting principal axis at F ✓ object image in objective F final image eye piece		2

Question		on	Answers	Notes	Total
11	b	i	object is far away so intermediate image forms at focal plane of objective 🗸 for final image at infinity object must also be at focal point of eyepiece 🖌 «hence 87.5 cm»	<i>No mark for simple addition of focal lengths without explanation.</i>	2
	b	ii	angular magnification = $\frac{85.0}{2.50} = 34$ angular diameter $34 \times 7.8 \times 10^{-3} = 0.2652 \approx 0.27$ «rad»		2
	С		chromatic aberration is the dependence of refractive index on wavelength ✓ but mirrors rely on reflection <i>OR</i> mirrors do not involve refraction ✓ «so do not suffer chromatic aberration»		2

Question		on	Answers	Notes	Total
12	a	i	longer distance without amplification ✓ signal cannot easily be interfered with ✓ less noise ✓ no cross talk ✓ higher data transfer rate ✓		2 max
	а	ii	infrared radiation suffers lower attenuation \checkmark		1
	b		loss = $10 \log \frac{2.4}{15}$ «= -7.959 dB» ✓ length = « $\frac{7.959}{0.30}$ =»26.53 ≈ 27 «km» ✓		2
	с		a thin core means that rays follow essentially the same path / OWTTE \checkmark and so waveguide (modal) dispersion is minimal / OWTTE \checkmark		2

Q	uesti	on	Answers	Notes	Total
13	а		bone and tissue absorb different amounts of X-rays OR bone and tissue have different attenuation coefficients ✓ so boundaries and fractures are delineated in an image ✓		2
	b		$\frac{I_{\text{bone}}}{I_{\text{tissue}}} = \frac{I_0 e^{-\mu_b x}}{I_0 e^{-\mu_t x}} = e^{-(\mu_b - \mu_t) x} \checkmark$ $\frac{I_{\text{bone}}}{I_{\text{tissue}}} = e^{-1.2 \times 10^{-2} \times (1.9 - 1.1) \times 10^3 \times 5.4 \times 10^{-2}} \checkmark$ $\frac{I_{\text{bone}}}{I_{\text{tissue}}} = 0.60 \checkmark$		3
	с	i	to split the energy level of protons in the body <i>OR</i> to cause protons in the body to align with the field / precess at Larmor frequency✓		1
	С	ii	to force/excite protons that are in the spin up/parallel state \checkmark into a transition to the spin down/antiparallel state \checkmark		2
	с	iii	the emitted radio frequency signal has a frequency that depends on the magnetic field \checkmark with a gradient field different parts of the body have different frequencies and so can be identified \checkmark		2

Option D — Astrophysics

Question		on	Answers	Notes	Total
14	а	i	stars fusing hydrogen «into helium» 🗸		1
	а	ii	$M = M_{\odot} (4 \times 10^5)^{\frac{1}{3.5}} = 39.86 M_{\odot} \checkmark$ $\ll M \approx 40 M_{\odot} \gg$	Accept reverse working.	1
	а	iii	$4 \times 10^5 = 13^2 \times \frac{T^4}{6000^4} \checkmark$ $T \approx 42000 \text{ «K» } \checkmark$	Accept use of substituted values into $L = \sigma 4\pi R^2 T^4$.	2
	а	iv	$4 \times 10^{-11} = 4 \times 10^5 \times \frac{1 \text{AU}^2}{d^2} \checkmark$ $d = 1 \times 10^8 \text{ (AU)} \checkmark$	Accept use of correct values into $b = \frac{L}{4\pi d^2}$.	2
	b		the gravitation «pressure» is balanced by radiation «pressure» ✓ that is created by the production of energy due to fusion in the core / OWTTE ✓	Award [1 max] if pressure and force is inappropriately mixed in the answer. Award [1 max] for unexplained "hydrostatic equilibrium is reached".	2

Question		on	Answers	Notes	Total
14	с		the Sun will evolve to become a red giant whereas Theta 1 Orionis will become a red super giant \checkmark		
			the Sun will explode as a planetary nebula whereas Theta 1 Orionis will explode as a supernova \checkmark		3
			the Sun will end up as a white dwarf whereas Theta 1 Orionis as a neutron star/black hole \checkmark		

Qu	iesti	on	Answers	Notes	Total
15	а	i	black body radiation / 3 K ✓ highly isotropic / uniform throughout <i>OR</i> filling the universe ✓	Do not accept: CMB provides evidence for the Big Bang model.	2
	а	ii	$\ll \lambda = \frac{2.9 \times 10^{-3}}{2.8} \approx 1.0 \text{ mm} \checkmark$		1
	b		the universe is expanding and so the wavelength of the CMB in the past was much smaller \checkmark indicating a very high temperature at the beginning \checkmark		2
	с	i		Award [1 max] for POT error.	2
	с	ii	$z = \frac{R}{R_0} - 1 \Rightarrow \frac{R}{R_0} = 1.16 \checkmark$ $\frac{R_0}{R} = 0.86 \checkmark$		2

Question		Answers	Notes	Total
16	а	a star will form out of a cloud of gas ✓ when the gravitational potential energy of the cloud exceeds the total random kinetic energy of the particles of the cloud <i>OR</i> the mass exceeds a critical mass for a particular radius and temperature ✓		2
	b	number of reactions is $\frac{10^{10} \times 365 \times 24 \times 3600 \times 3.8 \times 10^{26}}{4.3 \times 10^{-12}} = 2.79 \times 10^{55} \checkmark$ H mass used is $2.79 \times 10^{55} \times 4 \times 1.67 \times 10^{-27} = 1.86 \times 10^{29}$ «kg» \checkmark		2
	С	nuclear fusion reactions produce ever heavier elements depending on the mass of the star / temperature of the core \checkmark the elements / nuclear reactions arrange themselves in layers, heaviest at the core lightest in the envelope \checkmark		2

Qı	uesti	on	Answers	Notes	Total
17	а		curve starting earlier, touching at now and going off to infinity 🖌		1
	b	i	there is dark matter that does not radiate / cannot be observed \checkmark	Unexplained mention of "dark matter" is not sufficient for the mark.	1
	b	ii	$\rho_{\Lambda} = 0.68 \rho_{c} = 0.68 \times 10^{-26} \text{ wkgm}^{-3} \text{ s} \text{ for all } \mu^{-26} \times 9 \times 10^{16} \approx 6 \times 10^{-10} \text{ wl} \text{ s} \text{ s}^{-10} s$		2