Markscheme

May 2017

Physics

Higher level

Paper 3

22 pages

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1	a		in order to keep the temperature constant \checkmark in order to allow the system to reach thermal equilibrium with the surroundings/OWTTE \checkmark	Accept answers in terms of pressure or volume changes only if clearly related to reaching thermal equilibrium with the surroundings.	1 max
	b		recognizes b as gradient \checkmark calculates b in range 4.7×10^{4} to $5.3 \times 10^{4} \checkmark$ Pam \checkmark	Award [2 max] if POT error in b. Allow any correct SI unit, eg $\mathrm{kg} \mathrm{s}^{-2}$.	3
	C		$V \propto H$ thus ideal gas law gives $p \propto \frac{1}{H} \checkmark$ so graph should be «a straight line through origin,» as observed \checkmark		2
	d		$\begin{aligned} & n=\frac{b A}{R T} O R \text { correct substitution of one point from the graph } \\ & n=\frac{5 \times 10^{4} \times 1.3 \times 10^{-3}}{8.31 \times 300}=0.026 \approx 0.03 \end{aligned}$	Answer must be to 1 or 2 SF. Award [2] for a bald correct answer. Allow ECF from (b).	2

Question			Answers	Notes	Total
1	e		very large $\frac{1}{H}$ means very small volumes / very high pressures at very small volumes the ideal gas does not apply OR at very small volumes some of the assumptions of the kinetic theory of gases do not hold \checkmark		2

Question		Answers	Notes	Total
2	a	$\begin{aligned} & g=\frac{4 \pi^{2} \times 1.60}{2.540^{2}}=9.7907 \\ & \Delta g=g\left(\frac{\Delta L}{L}+2 \times \frac{\Delta T}{T}\right)=« 9.7907 \times\left(\frac{0.01}{1.60}+2 \times \frac{0.005}{2.540}\right)=» 0.0997 \\ & \text { OR } \\ & 1.0 \% \checkmark \\ & \text { hence } g=(9.8 \pm 0.1) \text { «} \mathrm{ms}^{-2} » \text { OR } \Delta g=0.1 \text { « } \mathrm{ms}^{-2} » \checkmark \end{aligned}$	For the first marking point answer must be given to at least 2 dp . Accept calculations based on $\begin{aligned} & g_{\max }=9.8908 \\ & g_{\min }=9.6913 \\ & \frac{g_{\max }-g_{\min }}{2}=0.099 \approx 0.1 \end{aligned} .$	3
	b	$\begin{aligned} & \frac{T}{T_{0}}=1.01 \checkmark \\ & \theta_{\max }=22 «<» \end{aligned}$	Accept answer from interval 20 to 24.	2

Section B

Option A - Relativity

| Question | | Answers | Notes | Total |
| :---: | :---: | :--- | :--- | :--- | :---: |
| $\mathbf{3}$ | a | a set of coordinate axes and clocks used to measure the position «in space/time of an object
 at a particular time»
 OR
 a coordinate system to measure x,y,z,and $t /$ OWTTE \checkmark | $\mathbf{1}$ | |
| | b | i | magnetic only \checkmark
 there is a current but no «net» charge «in the wire» \checkmark | |
| | b | ii | electric only \checkmark
 P is stationary so experiences no magnetic force \checkmark
 relativistic contraction will increase the density of protons in the wire \checkmark | $\mathbf{2}$ |

d	ii				

Question		Answers	Notes	Total
5	a	$\begin{aligned} & \gamma=1.96 \checkmark \\ & E_{k}=(\gamma-1) m_{0} c^{2}=900 « M e \mathrm{~V} » \\ & p d \approx 900 \text { «MV» } \checkmark \end{aligned}$	Award [2 max] if Energy and Potential difference are not clearly distinguished, eg by the unit.	3
	b	```energy of proton = }\mp@subsup{m}{mc}{2}=1838<MeV» total energy available = energy of proton + energy of antiproton = 1838+1838=3676 <MeV»\checkmark momentum of a one photon = Total energy / 2c = 1838 «Me Vc-1» \checkmark```		3

| $\mathbf{6}$ | \mathbf{a} | | $f=« \frac{E}{h}=» \frac{14400 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}=« 3.475 \times 10^{18} \mathrm{~Hz} » \checkmark$
 $\Delta f=« \frac{g \times \Delta h \times f}{c^{2}} \approx » 8550 《 \mathrm{~Hz} » \checkmark$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \mathbf{b} | «as the photon moves away from the Earth, » it has to spend energy to overcome the
 gravitational field \checkmark
 since $E=h f$, the detected frequency would be lower «than the emitted frequency» \checkmark | $\mathbf{2}$ | |

Option B — Engineering physics

Question			Answers	Notes	Total
7	a	i	$\frac{M}{3} v R \checkmark$		1
	a	ii	evidence of use of: $L=I \omega=\left(M R^{2}+\frac{M}{3} R^{2}\right) \omega \checkmark$		1
	a	iii	evidence of use of conservation of angular momentum, $\frac{M v R}{3}=\frac{4}{3} M R^{2} \omega$ «rearranging to get $\omega=\frac{v}{4 R}$ "		1
	a	iv	initial $K E=\frac{M v^{2}}{6} \checkmark$ final $K E=\frac{M v^{2}}{24}$ energy loss $=\frac{M v^{2}}{8}$		3

Question			Answers	Notes	Total
7	b	i	$\begin{aligned} & \alpha<=\frac{3}{4} \frac{\Gamma}{M R^{2}} »=\frac{3}{4} \frac{0.01}{0.7 \times 0.5^{2}} \\ & \text { «to give } \alpha=0.04286 \mathrm{rads}^{-2} \text { " } \end{aligned}$	Working OR answer to at least 3 SF must be shown.	1
	b	ii	$\begin{aligned} & \theta=\frac{\omega_{i}^{2}}{2 \alpha} « \text { from } \omega_{t}^{2}=\omega_{i}^{2}+2 \alpha \theta » \checkmark \\ & \theta «=\frac{v^{2}}{32 R^{2} \alpha}=\frac{2.1^{2}}{32 \times 0.5^{2} \times 0.043} »=12.8 \text { OR } 12.9 \text { «rad» } \\ & \text { number of rotations «=} \frac{12.9}{2 \pi} »=2.0 \text { revolutions } \checkmark \end{aligned}$		3

Question			Answers	Notes	Total
8	a		«a process in which there is» no thermal energy transferred between the system and the surroundings \checkmark		1
	b		A to $\mathrm{B} \boldsymbol{A N D} \mathrm{C}$ to $\mathrm{D} \checkmark$		1
	c	i	$\begin{aligned} & T=\frac{P V}{n R} \checkmark \\ & T\left(=\frac{512 \times 10^{3} \times 1.20 \times 10^{-3}}{0.150 \times 8.31}\right) \approx 493 \text { «K» } \end{aligned}$	The first mark is for rearranging.	2
	c	ii	$\begin{aligned} & P_{B}=\frac{P_{a} V_{A}}{V_{B}} \checkmark \\ & P_{B}=267 \mathrm{kPa} \checkmark \end{aligned}$	The first mark is for rearranging.	2
	d	i	«B to C adiabatic so» $P_{B} V_{B}^{\frac{5}{3}}=P_{C} V_{C}^{\frac{5}{3}}$ AND $P_{C} V_{C}=n R T_{C}$ «combining to get result» \checkmark	It is essential to see these 2 relations to award the mark.	1
	d	ii	$\begin{aligned} & T_{C}=\left(\frac{P_{B} V_{B}^{\frac{5}{3}}}{n R}\right) V_{C}^{\frac{-2}{3}} \checkmark \\ & T_{C}=«\left(\frac{267 \times 10^{3} \times\left(2.30 \times 10^{-3}\right)^{\frac{5}{3}}}{0.150 \times 8.31}\right)\left(2.90 \times 10^{-3}\right)^{\frac{-2}{3}} 》=422 « \mathrm{~K} » \checkmark \end{aligned}$		2
	e		the isothermal processes would have to be conducted very slowly / OWTTE \checkmark		1

Question		Answers	Notes	Total
9	a	ALTERNATIVE 1 pressure in a liquid increases with depth \checkmark so pressure at bottom of bubble greater than pressure at top \checkmark ALTERNATIVE 2 weight of liquid displaced \checkmark greater than weight of bubble		2
	b	$\frac{\text { weight }}{\text { buoyancy }}\left(=\frac{V \rho_{a} g}{V \rho_{l} g}=\frac{\rho_{a}}{\rho_{l}}=\frac{1.2}{1200}\right)=10^{-3}$ since the ratio is very small, the weight can be neglected \checkmark	Award [1 max] if only mass of the bubble is calculated and identified as negligible to mass of liquid displaced.	2
	c	evidence of equating the buoyancy and the viscous force " $\rho_{l} \frac{4}{3} \pi r^{3} g=6 \pi \eta r v_{t}$ " \checkmark $v_{t}=<\frac{2}{9} \frac{1200 \times 9.81}{1 \times 10^{-3}}\left(0.25 \times 10^{-3}\right)^{2}=» 0.16 《 \mathrm{~m} \mathrm{~s}^{-1} » \checkmark$		2

$\mathbf{1 0}$	\mathbf{a}	the loss of energy in an oscillating system \checkmark	$\mathbf{1}$	
	\mathbf{b}	$Q=2 \pi \frac{16^{2}}{16^{2}-10.3^{2}} \approx 11 \checkmark$ the amplitude decreases at a slower rate \checkmark a higher Q factor would mean that less energy is lost per cycle \checkmark	Accept calculation based on any two correct values giving answer from interval 10 to 13.	$\mathbf{1}$
\mathbf{c}		$\mathbf{2}$		

Option C - Imaging

Question			Answers	Notes	Total
11	a	i	an image formed by extensions of rays, not rays themselves OR an image that cannot be projected on a screen \checkmark		1
	a	ii	$\begin{aligned} & \frac{1}{v}=\frac{1}{3.0}-\frac{1}{4.0} \checkmark \\ & « v=12 \mathrm{~cm} » \end{aligned}$		1
	a	iii	$\begin{aligned} & u=18-12=6.0 « \mathrm{~cm} » \\ & v=-24<\mathrm{cm} » \\ & \text { « } \frac{1}{f}=\frac{1}{6.0}-\frac{1}{24} \Rightarrow » f=8.0<\mathrm{cm} » \end{aligned}$	Award [2 max] for answer of 4.8 cm . Minus sign required for MP2.	3
	a	iv	line parallel to principal axis from intermediate image meeting eyepiece lens at $P \checkmark$ line from arrow of final image to P intersecting principal axis at F		2

Question		Answers	Notes		
$\mathbf{1 1}$	\mathbf{b}	\mathbf{i}	object is far away so intermediate image forms at focal plane of objective \checkmark for final image at infinity object must also be at focal point of eyepiece \checkmark «hence 87.5 cm»	No mark for simple addition of focal lengths without explanation.	
	\mathbf{b}	$\mathbf{i i}$	angular magnification $=\frac{85.0}{2.50}=34 \checkmark$ angular diameter $34 \times 7.8 \times 10^{-3}=0.2652 \approx 0.27$ «rad» \checkmark chromatic aberration is the dependence of refractive index on wavelength \checkmark but mirrors rely on reflection OR mirrors do not involve refraction \checkmark «so do not suffer chromatic aberration»	$\mathbf{2}$	
c	$\mathbf{2}$				

Question			Answers	Notes	Total
12	a	i	longer distance without amplification signal cannot easily be interfered with \checkmark less noise \checkmark no cross talk \checkmark higher data transfer rate \checkmark		2 max
	a	ii	infrared radiation suffers lower attenuation \checkmark		1
	b		$\begin{aligned} & \text { loss }=10 \log \frac{2.4}{15} «=-7.959 \mathrm{~dB} » \\ & \text { length }=« \frac{7.959}{0.30}=» 26.53 \approx 27 \text { «km» } \downarrow \end{aligned}$		2
	c		a thin core means that rays follow essentially the same path / OWTTE \checkmark and so waveguide (modal) dispersion is minimal / OWTTE \checkmark		2

Question			Answers	Notes	Total
13	a		bone and tissue absorb different amounts of X-rays OR bone and tissue have different attenuation coefficients \checkmark so boundaries and fractures are delineated in an image \checkmark		2
	b		$\begin{aligned} & \frac{I_{\text {bone }}}{I_{\text {tissue }}}=\frac{I_{0} e^{-\mu_{b} x}}{I_{0} e^{-\mu_{4} x}}=e^{-\left(\mu_{b}-\mu_{t}\right) x} \\ & \frac{I_{\text {bone }}}{I_{\text {tissue }}}=e^{-1.2 \times 10^{-2} \times(1.9-1.1) \times 10^{3} \times 5.4 \times 10^{-2}} \\ & \frac{I_{\text {bone }}}{I_{\text {tissue }}}=0.60 \checkmark \end{aligned}$		3
	c	i	to split the energy level of protons in the body OR to cause protons in the body to align with the field / precess at Larmor frequency \checkmark		1
	C	ii	to force/excite protons that are in the spin up/parallel state \checkmark into a transition to the spin down/antiparallel state \checkmark		2
	C	iii	the emitted radio frequency signal has a frequency that depends on the magnetic field \checkmark with a gradient field different parts of the body have different frequencies and so can be identified		2

Option D - Astrophysics

Question			Answers	Notes	Total
14	a	i	stars fusing hydrogen «into helium» \checkmark		1
	a	ii	$\begin{aligned} & M=M_{\odot}\left(4 \times 10^{5}\right)^{\frac{1}{3.5}}=39.86 M_{\odot} \\ & « M \approx 40 M_{\odot} " \end{aligned}$	Accept reverse working.	1
	a	iii	$\begin{aligned} & 4 \times 10^{5}=13^{2} \times \frac{T^{4}}{6000^{4}} \\ & T \approx 42000 « \mathrm{~K} » \end{aligned}$	Accept use of substituted values into $L=\sigma 4 \pi R^{2} T^{4}$.	2
	a	iv	$\begin{aligned} & 4 \times 10^{-11}=4 \times 10^{5} \times \frac{1 A U^{2}}{d^{2}} \\ & d=1 \times 10^{8} « A U » \checkmark \end{aligned}$	Accept use of correct values into $b=\frac{L}{4 \pi d^{2}}$.	2
	b		the gravitation «pressure» is balanced by radiation «pressure» \checkmark that is created by the production of energy due to fusion in the core / OWTTE \checkmark	Award [1 max] if pressure and force is inappropriately mixed in the answer. Award [1 max] for unexplained "hydrostatic equilibrium is reached".	2

Question		Answers	Notes	Total
14	C	the Sun will evolve to become a red giant whereas Theta 1 Orionis will become a red super giant \checkmark the Sun will explode as a planetary nebula whereas Theta 1 Orionis will explode as a supernova the Sun will end up as a white dwarf whereas Theta 1 Orionis as a neutron star/black hole \checkmark		3

Question			Answers	Notes	Total
15	a	i	black body radiation / $3 \mathrm{~K} \checkmark$ highly isotropic / uniform throughout OR filling the universe	Do not accept: CMB provides evidence for the Big Bang model.	2
	a	ii	$« \lambda=\frac{2.9 \times 10^{-3}}{2.8} \geqslant \approx 1.0 \ll \mathrm{~mm} » \checkmark$		1
	b		the universe is expanding and so the wavelength of the CMB in the past was much smaller \checkmark indicating a very high temperature at the beginning \checkmark		2
	c	i	$\begin{aligned} & « z=\frac{v}{c} \Rightarrow » v=0.16 \times 3 \times 10^{5} «=0.48 \times 10^{5} \mathrm{~km} \mathrm{~s}^{-1} » \checkmark \\ & « d=\frac{v}{H_{0}} \Rightarrow v=\frac{0.48 \times 10^{5}}{68}=706 » \approx 710 « \mathrm{Mpc} » \end{aligned}$	Award [1 max] for POT error.	2
	c	ii	$\begin{aligned} & z=\frac{R}{R_{0}}-1 \Rightarrow \frac{R}{R_{0}}=1.16 \checkmark \\ & \frac{R_{0}}{R}=0.86 \checkmark \end{aligned}$		2

Question		Answers	Notes	Total
16	a	a star will form out of a cloud of gas \checkmark when the gravitational potential energy of the cloud exceeds the total random kinetic energy of the particles of the cloud OR the mass exceeds a critical mass for a particular radius and temperature \checkmark		2
	b	number of reactions is $\frac{10^{10} \times 365 \times 24 \times 3600 \times 3.8 \times 10^{26}}{4.3 \times 10^{-12}}=2.79 \times 10^{55} \checkmark$ H mass used is $2.79 \times 10^{55} \times 4 \times 1.67 \times 10^{-27}=1.86 \times 10^{29}$ «kg» \checkmark		2
	c	nuclear fusion reactions produce ever heavier elements depending on the mass of the star / temperature of the core the elements / nuclear reactions arrange themselves in layers, heaviest at the core lightest in the envelope \checkmark		2

| Question | | Answers | Total | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 7}$ | \mathbf{a} | curve starting earlier, touching at now and going off to infinity \checkmark | | Notes |

